МЕНЮ

01. КОРОТКО О ВЕТРОВОЙ ЭНЕРГЕТИКЕ

Ветроэнергетика - отрасль энергетики, специализирующаяся на преобразовании кинетической энергии воздушных масс в атмосфере в электрическую, механическую, тепловую или в любую другую форму энергии, удобную для использования в быту и на производстве. Преобразование может осуществляться:

- ветрогенератор для получения электрической энергии
- ветряная мельница для преобразования в механическую энергию
- парус для использования в транспорте
и другими.

Энергия ветра относится к возобновляемым видам энергии, потому что является следствием активности Солнца.

Ветроэнергетика является бурно развивающейся отраслью. К началу 2016 года общая установленная мощность всех ветрогенераторов составила 432 гигаватта и, таким образом, превзошла суммарную установленную мощность атомной энергетики (однако на практике использованная в среднем за год мощность ветрогенераторов (КИУМ) в несколько раз ниже установленной мощности, в то время как АЭС почти всегда работает в режиме установленной мощности). В 2014 году количество электрической энергии, произведённой всеми ветрогенераторами мира, составило 706 тераватт-часов (3 % всей произведённой человечеством электрической энергии).

Некоторые страны особенно интенсивно развивают ветроэнергетику, в частности,

в Дании с помощью ветрогенераторов производится до 42 % всей потребляемой электроэнергии;
в Португалии с помощью ветрогенераторов производится до 27 % всей потребляемой электроэнергии;
в Никарагуа с помощью ветрогенераторов производится до 21 % всей потребляемой электроэнергии;
в Испании с помощью ветрогенераторов производится до 20 % всей потребляемой электроэнергии;
в Ирландии с помощью ветрогенераторов производится до 19 % всей потребляемой электроэнергии;
в Германии с помощью ветрогенераторов производится до 18,8% всей потребляемой электроэнергии;
в ЕС в целом с помощью ветрогенераторов производится до 7,5 % всей потребляемой электроэнергии.

Более 80 стран мира использовали ветроэнергетику на коммерческой основе. По итогам 2015 года в ветроэнергетике занято более 1 000 000 человек во всем мире (в том числе 500 000 в Китае и 138 000 в Германии).

Крупные ветряные электростанции включаются в общую сеть, более мелкие используются для снабжения электричеством удалённых районов. В отличие от ископаемого топлива, энергия ветра практически неисчерпаема, повсеместно доступна и более экологична. Однако, сооружение ветряных электростанций сопряжено с некоторыми трудностями технического и экономического характера, замедляющими распространение ветроэнергетики. В частности, непостоянство ветровых потоков не создаёт проблем при небольшой пропорции ветроэнергетики в общем производстве электроэнергии, однако при росте этой пропорции, возрастают также и проблемы надёжности производства электроэнергии. Для решения подобных проблем используется интеллектуальное управление распределением электроэнергии.

История использования энергии ветра

Ветряные мельницы использовались для размола зерна в Персии уже в 200-м году до н. э. Мельницы такого типа были распространены в исламском мире и в XIII веке принесены в Европу крестоносцами.

Мельницы на козлах, так называемые немецкие мельницы, являлись до середины XVI века единственно известными. Сильные бури могли опрокинуть такую мельницу вместе со станиной. В середине XVI столетия один фламандец нашёл способ, посредством которого это опрокидывание мельницы делалось невозможным. В мельнице он ставил подвижной только крышу, и для того, чтобы поворачивать крылья по ветру, необходимо было повернуть лишь крышу, в то время как само здание мельницы было прочно укреплено на земле.
- Маркс К. Машины: применение природных сил и науки.
Масса козловой мельницы была ограниченной в связи с тем, что её приходилось поворачивать вручную. Поэтому была ограниченной и её производительность. Усовершенствованные мельницы получили название шатровых.

В XVI веке в городах Европы начинают строить водонасосные станции с использованием гидродвигателя и ветряной мельницы: Толедо - 1526 год, Глостер - 1542 год, Лондон - 1582 год, Париж - 1608 год и так далее.

В Нидерландах многочисленные ветряные мельницы откачивали воду с земель, ограждённых дамбами. Отвоёванные у моря земли использовались в сельском хозяйстве. В засушливых областях Европы ветряные мельницы применялись для орошения полей.

Ветряные мельницы, производящие электричество, были изобретены в XIX веке в Дании. Там в 1890 году была построена первая ветроэлектростанция, а к 1908 году насчитывалось уже 72 станции мощностью от 5 до 25 кВт. Крупнейшие из них имели высоту башни 24 метра и четырёхлопастные роторы диаметром 23 метра. Предшественница современных ветроэлектростанций с горизонтальной осью имела мощность 100 кВт и была построена в 1931 году в Ялте. Она имела башню высотой 30 метров. К 1941 году единичная мощность ветроэлектростанций достигла 1,25 МВт.

В период с 1940-х по 1970-е годы ветроэнергетика переживает период упадка в связи с интенсивным развитием передающих и распределительных сетей, дававших независимое от погоды энергоснабжение за умеренные деньги.

Возрождение интереса к ветроэнергетике началось в 1970-х после нефтяного кризиса 1973 года. Кризис продемонстрировал зависимость многих стран от импорта нефти и привел к поиску вариантов снижения этой зависимости. В середине 1970-х в Дании начались испытания предшественников современных ветрогенераторов. Позднее чернобыльская катастрофа также стимулировала интерес к возобновляемым источникам энергии. Калифорния осуществила одну из первых программ стимулирования ветроэнергетики, начав предоставление налоговых льгот для производителей электроэнергии из ветра.

В России
Основная статья: Ветроэнергетика России
В середине 1920-х годов ЦАГИ разрабатывал ветро-электрические станции и ветряки для сельского хозяйства. Конструкция «крестьянского ветряка» могла быть изготовлена на месте из доступных материалов. Его мощность варьировалась от 3 л. с., 8 л. с. до 45 л. с. Такая установка могла освещать 150-200 дворов или приводить в действие мельницу. Для постоянства работы был предусмотрен гидравлический аккумулятор. В 1931 году в Курске была построена ветроэлектростанция Уфимцева, первая в мире ветроэлектрическая станция с инерционным аккумулятором, она является объектом культурного наследия федерального значения. В том же году в Балаклаве вошла в строй ветроэлектростанция мощностью 100 киловатт, на тот момент самая мощная в мире, разрушена в 1941 году во время боёв Великой Отечественной войны.

Технический потенциал ветровой энергии России оценивается свыше 50 000 млрд кВт⋅ч/год. Экономический потенциал составляет примерно 260 млрд кВт⋅ч/год, то есть около 30 процентов производства электроэнергии всеми электростанциями России.

Энергетические ветровые зоны в России расположены, в основном, на побережье и островах Северного Ледовитого океана от Кольского полуострова до Камчатки, в районах Нижней и Средней Волги и Дона, побережье Каспийского, Охотского, Баренцева, Балтийского, Чёрного и Азовского морей. Отдельные ветровые зоны расположены в Карелии, на Алтае, в Туве, на Байкале.

Максимальная средняя скорость ветра в этих районах приходится на осенне-зимний период - период наибольшей потребности в электроэнергии и тепле. Около 30 % экономического потенциала ветроэнергетики сосредоточено на Дальнем Востоке, 14 % - в Северном экономическом районе, около 16 % - в Западной и Восточной Сибири.

Суммарная установленная мощность ветровых электростанций в стране на 2009 год составляет 17-18 МВт.

Самые крупные ветроэлектростанции России находятся в Крыму: Донузлавская ВЭС (суммарная мощность 18,7 МВт), Останинская ВЭС («Водэнергоремналадка») (26 МВт), Тарханкутская ВЭС (15,9 МВт) и Восточно-Крымская ВЭС. В общей сложности они располагают 522 ветроагрегатами мощностью 59 МВт.

Ещё одна крупная ветроэлектростанция России (5,1 МВт) расположена в районе посёлка Куликово Зеленоградского района Калининградской области. Зеленоградская ВЭУ состоит из 21 установки датской компании SEAS Energi Service A.S.

На Чукотке действует Анадырская ВЭС мощностью 2,5 МВт (10 ветроагрегатов по 250 кВт). Годовая выработка в 2011 году не превысила 0,2 млн кВт⋅ч.

В Республике Башкортостан действует ВЭС Тюпкильды мощностью 2,2 МВт, располагающаяся около одноимённой деревни Туймазинского района. ВЭС состоит из четырёх ветроагрегатов немецкой фирмы Hanseatische AG типа ЕТ 550/41 мощностью по 550 кВт. Годовая выработка электроэнергии в 2008-2010 годах не превышала 0,4 млн кВт⋅ч.

В Республике Калмыкия в Приютненском районе, компанией ООО «АЛТЭН» была построена ветровая электростанция мощностью 2,4 МВт, суммарной выработкой 10 млн кВт⋅ч в год. ООО «АЛТЭН» управляет активами установленного ветропарка, а также проводит мероприятия по его обслуживанию и эксплуатации совместно с компанией Vensys-Elektrotechnik.

В Республике Коми вблизи Воркуты недостроена Заполярная ВДЭС мощностью 3 МВт. На 2006 действуют 6 установок по 250 кВт общей мощностью 1,5 МВт.

На острове Беринга Командорских островов действует ВЭС мощностью 1,2 МВт.

Успешным примером реализации возможностей ветряных установок в сложных климатических условиях является ветродизельная электростанция на мысе Сеть-Наволок Кольского полуострова мощностью до 0,1 МВт. В 17 километрах от неё в 2009 году начато обследование параметров будущей ВЭС работающей в комплексе с Кислогубской ПЭС.

Существуют проекты на разных стадиях проработки Ленинградской ВЭС 75 МВт Ленинградская область, Ейской ВЭС 72 МВт Краснодарский край, Калининградской морской ВЭС 50 МВт, Морской ВЭС 30 МВт Карелия, Приморской ВЭС 30 МВт Приморский край, Магаданской ВЭС 30 МВт Магаданская область, Чуйской ВЭС 24 МВт Республика Алтай, Усть-Камчатской ВДЭС 16 МВт Камчатская область, Новиковской ВДЭС 10 МВт Республика Коми, Дагестанской ВЭС 6 МВт Дагестан, Анапской ВЭС 5 МВт Краснодарский край, Новороссийской ВЭС 5 МВт Краснодарский край, Валаамской ВЭС 4 МВт Карелия, Приютненской ВЭС 51 МВт Республика Калмыкия.

Как пример реализации потенциала территорий Азовского моря можно указать Новоазовскую ВЭС, действующей на 2010 год мощностью в 21,8 МВт, установленную на украинском побережье Таганрогского залива.

В 2003-2005 годах в рамках РАО ЕЭС проведены эксперименты по созданию комплексов на базе ветрогенераторов и двигателей внутреннего сгорания, по программе в посёлке Тикси установлен один агрегат. Все проекты начатые в РАО, связанные с ветроэнергетикой переданы компании РусГидро. В конце 2008 года РусГидро начала поиск перспективных площадок для строительства ветряных электростанций.

Предпринимались попытки серийного выпуска ветроэнергетических установок для индивидуальных потребителей, например водоподъёмный агрегат «Ромашка».

В последние годы увеличение мощностей происходит в основном за счет маломощных индивидуальных энергосистем, объём реализации которых составляет 250 ветроэнергетических установок (мощностью от 1 кВт до 5 кВт).

Современные методы генерации электроэнергии из энергии ветра

Мощность ветрогенератора зависит от площади, ометаемой лопастями генератора, и высоты над поверхностью. Например, турбины мощностью 3 МВт (V90) производства датской фирмы Vestas имеют общую высоту 115 метров, высоту башни 70 метров и диаметр лопастей 90 метров.

Воздушные потоки у поверхности земли/моря являются турбулентными - нижележащие слои тормозят расположенные выше. Этот эффект заметен до высоты 2 км, но резко снижается уже на высотах больше 100 метров. Высота расположения генератора выше этого приземного слоя одновременно позволяет увеличить диаметр лопастей и освобождает площади на земле для другой деятельности. Современные генераторы (2010 год) уже вышли на этот рубеж, и их количество резко растёт в мире. Ветрогенератор начинает производить ток при ветре 3 м/с и отключается при ветре более 25 м/с. Максимальная мощность достигается при ветре 15 м/с. Отдаваемая мощность пропорциональна третьей степени скорости ветра: при увеличении ветра вдвое, от 5 м/с до 10 м/с, мощность увеличивается в восемь раз.

Мощности ветрогенераторов и их размеры
Параметр1 МВт2 МВт2,3 МВт 
Высота мачты 50 м - 60 м 80 м 80 м
Длина лопасти 26 м 37 м 40 м
Диаметр ротора 54 м 76 м 82,4 м
Вес ротора на оси 25 т 52 т 52 т
Полный вес машинного отделения 40 т 82 т 82,5 т

В августе 2002 года компания Enercon построила прототип ветрогенератора E-112 мощностью 4,5 МВт. До декабря 2004 года турбина оставалась крупнейшей в мире. В декабре 2004 года германская компания REpower Systems построила свой ветрогенератор мощностью 5,0 МВт. Диаметр ротора этой турбины 126 метров, масса гондолы - 200 тонн, высота башни - 120 м. В конце 2005 года Enercon увеличил мощность своего ветрогенератора до 6,0 МВт. Диаметр ротора составил 114 метров, высота башни 124 метра. В 2009 году турбины класса 1,5 - 2,5 МВт занимали 82 % в мировой ветроэнегетике.

В январе 2014 года датская компания Vestas начала тестировать турбину V-164 мощностью 8 МВт. Первый контракт на поставку турбин был заключен в конце 2014 года. На сегодняшний день V-164 - наиболее мощный ветрогенератор в мире. Ведутся разработки генераторов мощностью более 10 МВт.

Наибольшее распространение в мире получила конструкция ветрогенератора с тремя лопастями и горизонтальной осью вращения, хотя кое-где ещё встречаются и двухлопастные. Наиболее эффективной конструкцией для территорий с малой скоростью ветровых потоков признаны ветрогенераторы с вертикальной осью вращения, т. н. роторные, или карусельного типа. Сейчас все больше производителей переходят на производство таких установок, так как далеко не все потребители живут на побережьях, а скорость континентальных ветров обычно находится в диапазоне от 3 до 12 м/с. В таком ветрорежиме эффективность вертикальной установки намного выше. Стоит отметить, что у вертикальных ветрогенераторов есть ещё несколько существенных преимуществ: они практически бесшумны, и не требуют совершенно никакого обслуживания, при сроке службы более 20 лет. Системы торможения, разработанные в последние годы, гарантируют стабильную работу даже при периодических шквальных порывах до 60 м/с.

Дания, Нидерланды и Германия собираются заложить искусственный остров в Северном море для выработки ветровой энергии. Проект планируется реализовывать на самой крупной отмели Северного моря Доггер-банка (в 100 километрах от восточного побережья Англии), так как здесь удачно сочетаются следующие факторы: относительно низкий уровень моря и мощные потоки воздуха. Остров площадью в шесть квадратных километров будет оборудован ветряными фермами с тысячами мельниц, также там будут построены взлетно-посадочная полоса и порт. Главная инновация данного строительства заключается в концентрации на максимально низкой стоимости транзита энергии. Основной целью проекта является создание ветропарка, который может вырабатывать до 30 Гвт дешевой электроэнергии. Долгосрочные планы предполагают увеличение этого количества до 70-100 Гвт, что позволит обеспечивать энергией около 80 миллионов жителей Европы, в том числе Германии, Нидерландов и Дании.

Офшорная ветроэнергетика

Наиболее перспективными местами для производства энергии из ветра считаются прибрежные зоны. Но стоимость инвестиций по сравнению с сушей выше в 1,5-2 раза. В море, на расстоянии 10-12 км от берега (а иногда и дальше), строятся офшорные ветряные электростанции. Башни ветрогенераторов устанавливают на фундаменты из свай, забитых на глубину до 30 метров. Также оффшорная электростанция включает распределительные подстанции и подводные кабели до побережья.

Помимо свай для фиксации турбин могут использоваться и другие типы подводных фундаментов, а также плавающие основания. Первый прототип плавающей ветряной турбины построен компанией H Technologies BV в декабре 2007 года. Ветрогенератор мощностью 80 кВт установлен на плавающей платформе в 10,6 морских милях от берега Южной Италии на участке моря глубиной 108 метров.

5 июня 2009 года компании Siemens AG и норвежская Statoil объявили об установке первой в мире коммерческой плавающей ветроэнергетической турбины мощностью 2,3 МВт, производства Siemens Renewable Energy.

Несмотря на снижение затрат на строительство ветрогенераторов в море в 2010-х годах, офшорная ветроэнергетика является одним из наиболее дорогих источников электричества. Стоимость производства электричества на офшорных ветроэлектростанциях колеблется от 200 до 125 долларов США / МВт*ч. MHI-Vestas, Siemens и DONG Energy подписали соглашение, в соответствии с которым компании стремятся снизить к 2020 году стоимость офшорного электричества ниже 120 долларов США / МВт*ч.

Статистика по использованию энергии ветра

К началу 2019 года общая установленная мощность всех ветрогенераторов превысила 600 гигаватт. Среднее увеличение суммы мощностей всех ветрогенераторов в мире, начиная с 2009 года, составляет 38-40 гигаватт за год и обусловлено бурным развитием ветроэнергетики в США, Индии, КНР и ЕС .

Во всём мире в 2008 году в индустрии ветроэнергетики были заняты более 400 тысяч человек. В 2008 году мировой рынок оборудования для ветроэнергетики вырос до 36,5 миллиардов евро, или около 46,8 миллиардов американских долларов.

В 2010 году в Европе было сконцентрировано 44 % установленных ветряных электростанций, в Азии - 31 %, в Северной Америке - 22 %.

В 2014 году 39 % электроэнергии в Дании вырабатывалось из энергии ветра.

В 2014 году ветряные электростанции Германии произвели 8,6 % от всей произведённой в Германии электроэнергии.

В 2009 году в Китае ветряные электростанции вырабатывали около 1,3 % электроэнергии страны. В КНР с 2006 года действует закон о возобновляемых источниках энергии. Предполагается, что к 2020 году мощности ветроэнергетики достигнут 80-100 ГВт.

В декабре 2014 года ветроэнергетика обеспечила 164 % электричества, потребляемого домохозяйствами Шотландии. 28 октября 2013 ветрогенераторы Дании произвели 122 процента от потребляемого электричества. Португалия и Испания в некоторые дни 2007 года из энергии ветра выработали около 20 % электроэнергии. 22 марта 2008 года в Испании из энергии ветра было выработано 40,8 % всей электроэнергии страны.

Перспективы

Запасы энергии ветра более чем в сто раз превышают запасы гидроэнергии всех рек планеты.

Германия планирует к 2025 году производить 40-45 % электроэнергии из возобновляемых источников энергии. Ранее Германия устанавливала цель 12 % электричества к 2010 году. Эта цель была достигнута в 2007 году.

Дания планирует к 2020 г. 50 % потребности страны в электроэнергии обеспечивать за счет ветроэнергетики.

Франция планирует к 2020 году построить ветряных электростанций на 25 000 МВт, из них 6000 МВт - офшорных.

В 2008 году Европейским Союзом установлена цель: к 2010 году установить ветрогенераторов на 40 тыс. МВт, а к 2020 году - 180 тыс. МВт. Согласно планам Евросоюза общее количество электрической энергии, которую выработают ветряные электростанции, составит 494,7 Тв-ч..

В Китае принят Национальный План Развития. Планируется, что установленные мощности Китая должны вырасти до 5 тыс. МВт к 2010 году и до 30 тыс. МВт к 2020 году. Однако бурное развитие ветроэнергетического сектора позволило Китаю превысить порог в 30 ГВт установленной мощности уже в 2010 году.

Индия планировала к 2012 году увеличить свои ветряные мощности в 2 раза (на 6 тысяч МВт) в сравнении с 2008 годом. Эта цель была достигнута.

Венесуэла за 5 лет с 2010 года намеревалась построить ветряных электростанций на 1500 МВт.. Цель не была достигнута.

Экономические аспекты ветроэнергетики

Основная часть стоимости ветроэнергии определяется первоначальными расходами на строительство сооружений ВЭУ (стоимость 1 кВт установленной мощности ВЭУ ~$1000).

Экономия топлива
Ветряные генераторы в процессе эксплуатации не потребляют ископаемого топлива. Работа ветрогенератора мощностью 1 МВт за 20 лет позволяет сэкономить примерно 29 тыс. тонн угля или 92 тыс. баррелей нефти.

Себестоимость электроэнергии
Себестоимость электричества, производимого ветрогенераторами, зависит от скорости ветра.

Скорость ветраСебестоимость (для США2004 год)
7,16 м/c 4,8 цента/кВт·ч;
8,08 м/с 3,6 цента/кВт·ч;
9,32 м/с 2,6 цента/кВт·ч.

Для сравнения: себестоимость электричества, производимого на угольных электростанциях США, 9 - 30 цента/кВт·ч. Средняя стоимость электричества в Китае 13 цента/кВт·ч.

При удвоении установленных мощностей ветрогенерации себестоимость производимого электричества падает на 15 %. Ожидается, что себестоимость ещё снизится на 35-40 % к концу 2006 г. В начале 80-х годов стоимость ветряного электричества в США составляла $0,38.

В марте 2006 года Earth Policy Institute (США) сообщил о том, что в двух районах США стоимость ветряной электроэнергии стала ниже стоимости традиционной энергии. Осенью 2005 года из-за роста цен на природный газ и уголь стоимость ветряного электричества стала ниже стоимости электроэнергии, произведённой из традиционных источников. Компании Austin Energy из Техаса и Xcel Energy из Колорадо первыми начали продавать электроэнергию, производимую из ветра, дешевле, чем электроэнергию, производимую из традиционных источников.

Экономика ветроэнергетики в России

В большинстве регионов России среднегодовая скорость ветра не превышает 5 м/с[источник не указан 2437 дней], в связи с чем привычные ветрогенераторы с горизонтальной осью вращения практически не применимы - их стартовая скорость начинается с 3-6 м/с, и получить от их работы существенное количество энергии не удастся. Однако на сегодняшний день все больше производителей ветрогенераторов предлагают т. н. роторные установки, или ветрогенераторы с вертикальной осью вращения. Принципиальное отличие состоит в том, что вертикальному генератору достаточно 1 м/с чтобы начать вырабатывать электричество. Развитие этого направления снимает ограничения по использованию энергии ветра в целях электроснабжения. Наиболее прогрессивная технология - сочетание в одном устройстве генераторов двух видов - вертикального ветрогенератора и солнечных батарей. Дополняя друг друга, совместно они гарантируют производство достаточного количества электроэнергии на любых территориях и в любых климатических условиях. Достаточных, например, для уличного освещения или питания объектов инженерно-технической инфраструктуры (базовые станции сотовой связи[источник не указан 2378 дней], пункты наблюдения, погодные и метеостанции и так далее).

Другие экономические проблемы

Ветроэнергетика является нерегулируемым источником энергии. Выработка ветроэлектростанции зависит от силы ветра - фактора, отличающегося большим непостоянством. Соответственно, выдача электроэнергии с ветрогенератора в энергосистему отличается большой неравномерностью как в суточном, так и в недельном, месячном, годовом и многолетнем разрезах. Учитывая, что энергосистема сама имеет неоднородности нагрузки (пики и провалы энергопотребления), регулировать которые ветроэнергетика, естественно, не может, введение значительной доли ветроэнергетики в энергосистему способствует её дестабилизации. Понятно, что ветроэнергетика требует резерва мощности в энергосистеме (например, в виде газотурбинных электростанций), а также механизмов сглаживания неоднородности их выработки (в виде ГЭС или ГАЭС). Данная особенность ветроэнергетики существенно удорожает получаемую от них электроэнергию. Энергосистемы с большой неохотой подключают ветрогенераторы к энергосетям, что привело к появлению законодательных актов, обязующих их это делать.

Проблемы в сетях и диспетчеризации энергосистем из-за нестабильности работы ветрогенераторов начинаются после достижения ими доли в 20-25 % от общей установленной мощности системы. Для России это будет показатель, близкий к 50 тыс. - 55 тыс. МВт.

По данным испанских компаний «Gamesa Eolica» и «WinWind» точность прогнозов выдачи энергии ветростанций при почасовом планировании на рынке «на день вперёд» или спотовом режиме превышает 95 %.

Небольшие единичные ветроустановки могут иметь проблемы с сетевой инфраструктурой, поскольку стоимость линии электропередачи и распределительного устройства для подключения к энергосистеме могут оказаться слишком большими. Проблема частично решается, если ветроустановка подключается к местной сети, где есть энергопотребители. В этом случае используется существующее силовое и распределительное оборудование, а ВЭС создаёт некоторый подпор мощности, снижая мощность, потребляемую местной сетью извне. Трансформаторная подстанция и внешняя линия электропередачи оказываются менее нагруженными, хотя общее потребление мощности может быть выше.

Крупные ветроустановки испытывают значительные проблемы с ремонтом, поскольку замена крупной детали (лопасти, ротора и т. п.) на высоте более 100 метров является сложным и дорогостоящим мероприятием.

Экономика малой ветроэнергетики

В России считается, что применение ветрогенераторов в быту для обеспечения электричеством малоцелесообразно из-за:

Высокой стоимости инвертора ~ 50 % стоимости всей установки (применяется для преобразования переменного или постоянного тока получаемого от ветрогенератора в ~ 220В 50Гц (и синхронизации его по фазе с внешней сетью при работе генератора впараллель)

Высокой стоимости аккумуляторных батарей - около 25 % стоимости установки (используются в качестве источника бесперебойного питания при отсутствии или пропадании внешней сети)

Для обеспечения надёжного электроснабжения к такой установке иногда добавляют дизель-генератор, сравнимый по стоимости со всей установкой.

В настоящее время, несмотря на рост цен на энергоносители, себестоимость электроэнергии не составляет сколько-нибудь значительной величины у основной массы производств по сравнению с другими затратами; ключевыми для потребителя остаются надёжность и стабильность электроснабжения.

Основными факторами, приводящими к удорожанию энергии, получаемой от ветрогенераторов, являются:

Необходимость получения электроэнергии промышленного качества ~ 220В 50 Гц (требуется применение инвертора)

Необходимость автономной работы в течение некоторого времени (требуется применение аккумуляторов)

Необходимость длительной бесперебойной работы потребителей (требуется применение дизель-генератора)

В настоящее время наиболее экономически целесообразно получение с помощью ветрогенераторов не электрической энергии промышленного качества, а постоянного или переменного тока (переменной частоты) с последующим преобразованием его с помощью ТЭНов в тепло, для обогрева жилья и получения горячей воды. Эта схема имеет несколько преимуществ:

Отопление является основным энергопотребителем любого дома в России.

Схема ветрогенератора и управляющей автоматики кардинально упрощается.

Схема автоматики может быть в самом простом случае построена на нескольких тепловых реле.

В качестве аккумулятора энергии можно использовать обычный бойлер с водой для отопления и горячего водоснабжения.

Потребление тепла не так требовательно к качеству и бесперебойности: температуру воздуха в помещении можно поддерживать в широких диапазонах 19-25 °C, а в бойлерах горячего водоснабжения 40-97 °C без ущерба для потребителей.

Экологические аспекты ветроэнергетики

Выбросы в атмосферу

Ветрогенератор мощностью 1 МВт сокращает ежегодные выбросы в атмосферу 1800 тонн СО2, 9 тонн SO2, 4 тонн оксидов азота.

По оценкам Global Wind Energy Council к 2050 году мировая ветроэнергетика позволит сократить ежегодные выбросы СО2 на 1,5 миллиарда тонн.

Влияние на климат

Ветрогенераторы изымают часть кинетической энергии движущихся воздушных масс, что приводит к снижению скорости их движения. При массовом использовании ветряков (например, в Европе) это замедление теоретически может оказывать заметное влияние на локальные (и даже глобальные) климатические условия местности. В частности, снижение средней скорости ветров способно сделать климат региона чуть более континентальным за счет того, что медленно движущиеся воздушные массы успевают сильнее нагреться летом и охлаждаться зимой. Также отбор энергии у ветра может способствовать изменению влажностного режима прилегающей территории. Впрочем, учёные пока только разворачивают исследования в этой области, научные работы, анализирующие эти аспекты, не дают количественную оценку воздействия широкомасштабной ветряной энергетики на климат, однако позволяют заключить, что оно может быть не столь пренебрежимо малым, как полагали ранее.

Согласно моделированию Стэнфордского университета, большие оффшорные ветроэлектростанции могут существенно ослабить ураганы, уменьшая экономический ущерб от их воздействия.

Шум

Ветряные энергетические установки производят две разновидности шума:

механический шум - шум от работы механических и электрических компонентов (для современных ветроустановок практически отсутствует, но является значительным в ветроустановках старших моделей)
аэродинамический шум - шум от взаимодействия ветрового потока с лопастями установки (усиливается при прохождении лопасти мимо башни ветроустановки)

В настоящее время при определении уровня шума от ветроустановок пользуются только расчётными методами. Метод непосредственных измерений уровня шума не даёт информации о шумности ветроустановки, так как эффективное отделение шума ветроустановки от шума ветра в данный момент невозможно.

Источник шумаУровень шума, дБ
Болевой порог человеческого слуха 120
Шум турбин реактивного двигателя на удалении 250 м 105
Шум от отбойного молотка в 7 м 95
Шум от грузовика при скорости движения 48 км/ч на удалении в 100 м 65
Шумовой фон в офисе 60
Шум от легковой автомашины при скорости 64 км/ч 55
Шум от ветрогенератора в 350 м 35-45
Шумовой фон ночью в деревне 20-40

В непосредственной близости от ветрогенератора у оси ветроколеса уровень шума достаточно крупной ветроустановки может превышать 100 дБ.

Примером подобных конструктивных просчётов является ветрогенератор Гровиан. Из-за высокого уровня шума установка проработала около 100 часов и была демонтирована.

Законы, принятые в Великобритании, Германии, Нидерландах и Дании, ограничивают уровень шума от работающей ветряной энергетической установки до 45 дБ в дневное время и до 35 дБ ночью. Минимальное расстояние от установки до жилых домов - 300 м.

Низкочастотные вибрации

Низкочастотные колебания, передающиеся через почву, вызывают ощутимый дребезг стекол в домах на расстоянии до 60 м от ветроустановок мегаваттного класса.

Как правило, жилые дома располагаются на расстоянии не менее 300 м от ветроустановок. На таком расстоянии вклад ветроустановки в инфразвуковые колебания уже не может быть выделен из фоновых колебаний.

Обледенение лопастей

При эксплуатации ветроустановок в зимний период при высокой влажности воздуха возможно образование ледяных наростов на лопастях. При пуске ветроустановки возможен разлёт льда на значительное расстояние. Как правило, на территории, на которой возможны случаи обледенения лопастей, устанавливаются предупредительные знаки на расстоянии 150 м от ветроустановки.

Кроме того, в случае легкого обледенения лопастей были отмечены случаи улучшения аэродинамических характеристик профиля.

Визуальное воздействие

Визуальное воздействие ветрогенераторов - субъективный фактор. Для улучшения эстетического вида ветряных установок во многих крупных фирмах работают профессиональные дизайнеры. Ландшафтные архитекторы привлекаются для визуального обоснования новых проектов.

В обзоре, выполненном датской фирмой AKF, стоимость воздействия шума и визуального восприятия от ветрогенераторов оценена менее 0,0012 евро на 1 кВт·ч. Обзор базировался на интервью, взятых у 342 человек, живущих поблизости от ветряных ферм. Жителей спрашивали, сколько они заплатили бы за то, чтобы избавиться от соседства с ветрогенераторами.

Использование земли

Турбины занимают только 1 % от всей территории ветряной фермы. На 99 % площади фермы возможно заниматься сельским хозяйством или другой деятельностью, что и происходит в таких густонаселённых странах, как Дания, Нидерланды, Германия. Фундамент ветроустановки, занимающий место около 10 м в диаметре, обычно полностью находится под землёй, позволяя расширить сельскохозяйственное использование земли практически до самого основания башни. Земля сдаётся в аренду, что позволяет фермерам получать дополнительный доход. В США стоимость аренды земли под одной турбиной составляет $3000-$5000 в год.

Источник энергииУдельный показатель площади земельного участка,
требующейся для производства 1 млн кВт·ч за 30 лет (м²)
Геотермальный источник 404
Ветер 800-1335
Фотоэлектрический элемент 364
Солнечный нагревательный элемент 3561
Уголь 3642

Таблица: Удельная потребность в площади земельного участка для производства 1 млн кВт·ч электроэнергии

Вред, наносимый животным и птицам

Причины гибели птицЧисло погибших птиц (из расчёта на 10 000)
Дома / окна 5500
Кошки 1000
Другие причины 1000
ЛЭП 800
Механизмы 700
Пестициды 700
Телебашни 250
Ветряные турбины Менее 1

Таблица: Вред, наносимый животным и птицам. Данные AWEA.

Популяции летучих мышей, живущие рядом с ВЭС на порядок более уязвимы, нежели популяции птиц. Возле концов лопастей ветрогенератора образуется область пониженного давления, и млекопитающее, попавшее в неё, получает баротравму. Более 90 % летучих мышей, найденных рядом с ветряками обнаруживают признаки внутреннего кровоизлияния. По объяснениям учёных, птицы имеют иное строение лёгких, а потому менее восприимчивы к резким перепадам давления и страдают только от непосредственного столкновения с лопастями ветряков.

Использование водных ресурсов

В отличие от традиционных тепловых электростанций, ветряные электростанции не используют воду, что позволяет существенно снизить нагрузку на водные ресурсы.

Размер ветряных турбин

Ветровые турбины можно разделить на три класса: малые, средние и крупные. Небольшие ветровые турбины способны генерировать 50-60 кВт мощности и использовать роторы диаметром от 1 до 15 м. Они в основном используются в отдаленных районах, где есть потребность в электричестве.

Большинство ветряных турбин являются турбинами среднего размера. Они используют роторы диаметром 15-60 м и имеют мощность между 50-1500 кВт. Большинство коммерческих турбин генерируют мощность от 500 кВт до 1500 кВт.

Большие ветровые турбины имеют роторы, которые измеряют диаметры 60-100 м и способны генерировать энергию на 2-3 МВт. На практике было показано, что эти турбины менее экономичны и менее надежны, чем средние. Большие ветровые турбины производят до 1,8 МВт и могут иметь поддон более 40 м, башни 80 м.

Некоторые турбины могут производить 5 МВт, хотя для этого требуется скорость ветра около 5,5 м / с или 20 км / ч. Немногие районы на Земле имеют эти скорости ветра, но более сильные ветры можно найти на больших высотах и в океанических районах.

Безопасность энергии ветра

Энергия ветра - это чистая и возобновляемая энергия, но она прерывистая, с вариациями в течение дня и сезона, и даже от года к году. Ветряные турбины работают около 60% в год в ветреных регионах. Для сравнения, угольные заводы работают примерно на 75-85% от общей мощности.

Большинство турбин производят энергию более 25% времени, этот процент растет зимой, когда более сильные ветры.

В случаях, когда ветряные турбины подключены к большим электрическим сетям, прерывистый характер энергии ветра не влияет на потребителей. Безветровые дни компенсируются другими источниками энергии, такими как угольные электростанции или гидроэлектростанции, которые подключены к сетке.

Люди, которые живут в отдаленных местах и используют электричество от ветряных турбин, часто используют батареи или резервные генераторы для обеспечения энергии в периоды без ветра.

Большинство коммерческих ветровых турбин находятся в автономном режиме (для обслуживания или ремонта) менее чем в 3% случаев, будучи столь же безопасными, как и обычные электростанции.

Ветровые турбины считаются долговечными. Многие турбины производят энергию с начала 1980-х годов. Многие американские мельницы ветряных электростанций используются в течение нескольких поколений.

Радиопомехи

Металлические сооружения ветроустановки, особенно элементы в лопастях, могут вызвать значительные помехи в приёме радиосигнала. Чем крупнее ветроустановка, тем больше помех она может создавать. В ряде случаев для решения проблемы приходится устанавливать дополнительные ретрансляторы.

 

 

 

 

Ветряная электростанция - это несколько ВЭУ, собранных в одном или нескольких местах и объединённых в единую сеть. Крупные ветровые электростанции могут состоять из 100 и более ветрогенераторов. Иногда ветровые электростанции называют «ветровыми фермами» (от англ. Wind farm).

Планирование

Ветровые электростанции строят в местах с высокой средней скоростью ветра - от 4,5 м/с и выше.

Предварительно проводят исследование потенциала местности. Анемометры устанавливают на высоте от 30 до 100 метров, и в течение одного-двух лет собирают информацию о скорости и направлении ветра. Полученные сведения могут объединяться в карты доступности энергии ветра. Такие карты (и специальное программное обеспечение) позволяют потенциальным инвесторам оценить скорость окупаемости проекта.

Обычные метеорологические сведения не подходят для строительства ветровых электростанций, так как эти сведения о скоростях ветра собирались на уровне земли (до 10 метров) и в черте городов, или в аэропортах.

Во многих странах карты ветров для ветроэнергетики создаются государственными структурами, или с государственной помощью. Например, в Канаде Министерство развития и Министерство Природных ресурсов создали Атлас ветров Канады и WEST (Wind Energy Simulation Toolkit) - компьютерную модель, позволяющую планировать установку ветрогенераторов в любой местности Канады. В 2005 году Программа Развития ООН создала карту ветров для 19 развивающихся стран.

Высота

Скорость ветра возрастает с высотой. Поэтому ветровые электростанции строят на вершинах холмов или возвышенностей, а генераторы устанавливают на башнях высотой 30-60 метров. Принимаются во внимание предметы, способные влиять на ветер: деревья, крупные здания и т. д.

Экологический эффект

При строительстве ветровых электростанций учитывается влияние ветрогенераторов на окружающую среду. Законы, принятые в Великобритании, Германии, Нидерландах и Дании, ограничивают уровень шума от работающей ветровой энергетической установки до 45 дБ в дневное время и до 35 дБ ночью. Минимальное расстояние от установки до жилых домов - 300 м.

Современные ветровые электростанции прекращают работу во время сезонного перелёта птиц.

Типы ветровых электростанций

Наземная

Самый распространённый в настоящее время тип ветровых электростанций. Ветрогенераторы устанавливаются на холмах или возвышенностях.

Промышленный ветрогенератор строится на подготовленной площадке за 7-10 дней. Получение разрешений регулирующих органов на строительство ветровой электростанции может занимать год и более.

Для строительства необходима дорога до строительной площадки, тяжёлая подъёмная техника с выносом стрелы более 50 метров, так как гондолы устанавливаются на высоте около 50 метров.

Электростанция соединяется кабелем с передающей электрической сетью.

Крупнейшей на данный момент ветровой электростанцией является электростанция Альта, расположенная в штате Калифорния, США. Полная мощность - 1550 МВт.

Прибрежная

Строительство прибрежной электростанции в Германии.

Прибрежные ветровые электростанции строят на небольшом удалении от берега моря или океана. На побережье с суточной периодичностью дует бриз, что вызвано неравномерным нагреванием поверхности суши и водоёма. Дневной, или морской бриз, движется с водной поверхности на сушу, а ночной, или береговой - с остывшего побережья к водоёму.

Шельфовая

Шельфовые ветровые электростанции строят в море: 10-60 километров от берега. Шельфовые ветровые электростанции обладают рядом преимуществ:

их практически не видно с берега;

они не занимают землю;

они имеют большую эффективность из-за регулярных морских ветров.

Шельфовые электростанции строят на участках моря с небольшой глубиной. Башни ветрогенераторов устанавливают на фундаменты из свай, забитых на глубину до 30 метров. Электроэнергия передаётся на землю по подводным кабелям.

Шельфовые электростанции более дороги в строительстве, чем их наземные аналоги. Для генераторов требуются более высокие башни и более массивные фундаменты. Солёная морская вода может приводить к коррозии металлических конструкций.

В конце 2008 года во всём мире суммарные мощности шельфовых электростанций составили 1471 МВт. За 2008 год во всём мире было построено 357 МВт шельфовых мощностей. Крупнейшей шельфовой станцией в 2009 году являлась электростанция Миддельгрюнден (Дания) с установленной мощностью 40 МВт. В 2013 году крупнейшей стала London Array (Великобритания) с установленной мощностью 630 МВт. 6 сентября 2018 года в 19 км от берегов Великобритании в Ирландском море на северо-западе Англии запущена в эксплуатацию оффшорная ветряная электростанция Walney Extension. Суммарная мощность её ветряков составляет 659 МВт. В 2020 году планируется завершить строительство ветряных электростанции East Anglia One мощностью 714 МВт и Hornsea Project One мощностью 1,2 ГВт, в 2022 году - электростанции Hornsea Project Two мощностью 1,4 ГВт.

Для строительства и обслуживания подобных электростанций используются самоподъёмные суда.

Плавающая

Первый прототип плавающей ветровой турбины построен компанией H Technologies BV в декабре 2007 года. Ветрогенератор мощностью 80 кВт установлен на плавающей платформе в 10,6 морских милях от берега Южной Италии на участке моря глубиной 108 метров.

Норвежская компания StatoilHydro разработала плавающие ветрогенераторы для морских станций большой глубины. StatoilHydro построила демонстрационную версию мощностью 2,3 МВт в сентябре 2009 года. Турбина под названием Hywind весит 5 300 тонн при высоте 65 метров. Располагается она в 10 километрах от острова Кармой, неподалёку от юго-западного берега Норвегии.

Стальная башня этого ветрогенератора уходит под воду на глубину 100 метров. Над водой башня возвышается на 65 метров. Диаметр ротора составляет 82,4 м. Для стабилизации башни ветрогенератора и погружения его на заданную глубину в нижней его части размещён балласт (гравий и камни). При этом от дрейфа башню удерживают три троса с якорями, закреплёнными на дне. Электроэнергия передаётся на берег по подводному кабелю.

Компания в 2017 году довела мощность турбины до 6 МВт, а диаметр ротора - до 154 метра.

Парящая

Парящей называют ветровые турбины, размещенные высоко над землей, для использования более сильного и стойкого ветра. Концепция разработана в 1930-е годы в СССР инженером Егоровым.

Текущим рекордсменом считается «Парящая ветровая турбина Altaeros» (Altaeros Buoyant Airborne Turbine (BAT)), которая будет установлена на высоте 1000 футов (304,8 м) над землей. Этот пилотный проект промышленного масштаба будет находиться на высоте 275 футов выше, чем текущий рекордсмен - Vestas V164-8.0-MW. Последний совсем недавно установил свой прототип в Датском национальном центре тестирования больших турбин (Danish National Test Center for Large Wind Turbines) в Остерильде (Østerild). Высота расположения оси Vestas 460 футов (140 метров), лопасти турбин в высоту более 720 футов (220 метров). У Altaeros мощность турбины 30 кВт. этого достаточно для обеспечения энергией 12 домов. Для поднятия на такую высоту Altaeros использует невоспламеняемую надувную оболочку, наполненную гелием. Проводником для произведенной энергии служат высокопрочные канаты.

Горная

Первая на постсоветском пространстве горная ВЭС мощностью 1,5 МВт была запущена на Кордайском перевале в Жамбылской области Казахстана в 2011 году. Высота площадки - 1200 метров над уровнем моря. Среднегодовая скорость ветра 5,9 м/сек. В 2014 году количество ветротурбин «Vista International» мощностью по 1,0 МВт на «Кордайской ВЭС» было доведено до 9 агрегатов при проектной мощности 21 МВт. В дальнейшем планируется введение в строй Жанатасской (400 МВт) и Шокпарской (200 МВт) ветряных электростанций.

В феврале 2015 года в Восточных Карпатах у города Старый Самбор запущена в работу первая в Западной Украине горная ВЭС «Старый Самбор 1» мощностью в 13,2 МВт. Общая мощность 79,2 МВТ. Она представлена ветротурбинами VESTAS V-112 датского производства номинальной мощностью 6,6 МВт. Высота площадки 500 - 600 м над уровнем моря, среднегодовая скорость ветра 6,3 м/сек.

 

 

 

Ветрогенератор (ветроэлектрическая установка или сокращенно ВЭУ) - устройство для преобразования кинетической энергии ветрового потока в механическую энергию вращения ротора с последующим её преобразованием в электрическую энергию.

Ветрогенераторы можно разделить на три категории: промышленные, коммерческие и бытовые (для частного использования).

Промышленные устанавливаются государством или крупными энергетическими корпорациями. Как правило, их объединяют в сети, в результате получается ветровая электростанция. Её основное отличие от традиционных (тепловых, атомных) - полное отсутствие, как сырья, так и отходов. Единственное важное требование для ВЭС - высокий среднегодовой уровень ветра. Мощность современных ветрогенераторов достигает 8 МВт.

Мощность ветрогенератора зависит от мощности воздушного потока ( {\displaystyle N} N), определяемой скоростью ветра и ометаемой площадью {\displaystyle N=pSV^{3}/2} {\displaystyle N=pSV^{3}/2},

где: {\displaystyle V} V - скорость ветра, {\displaystyle p} p - плотность воздуха, {\displaystyle S} S - ометаемая площадь.

Типы ветрогенераторов

Существуют классификации ветрогенераторов по количеству лопастей, по материалам, из которых они выполнены, по оси вращения и по шагу винта.

Существуют два основных типа ветротурбин:

с вертикальной осью вращения («карусельные» - роторные (в том числе «ротор Савониуса»), «лопастные» ортогональные - ротор Дарье);

с горизонтальной осью круглого вращения (крыльчатые). Они бывают быстроходными с малым числом лопастей и тихоходными многолопастными, с КПД до 40%.

Также существуют барабанные и роторные ветротурбины.

Ветрогенераторы, как правило, используют три лопасти для достижения компромисса между величиной крутящего момента (возрастает с ростом числа лопастей) и скоростью вращения (понижается с ростом числа лопастей).

Преимущества и недостатки разных типов ВЭУ

Теоретически доказано, что коэффициент использования энергии ветра идеального ветроколеса (КИЭВ) горизонтальных, пропеллерных и вертикально-осевых установок равен, 0.593. Это объясняется тем, что роторы ВЭУ обоих типов используют один и тот же эффект подъемной силы, возникающий при обтекании ветровым потоком профилированной лопасти, К настоящему времени достигнутый на горизонтальных пропеллерных ВЭУ коэффициент использования энергии ветра составляет 0.4. На данный момент этот коэффициент у ветрогенераторов (ветроустановок) ГРЦ-Вертикаль составляет 0.38. Проведенные экспериментальные исследования российских вертикально-осевых установок показали, что достижение значения 0.4-0.45 - вполне реальная задача. Таким образом, можно отметить, что коэффициенты использования энергии ветра горизонтально-осевых пропеллерных и вертикально-осевых ВЭУ близки.

Устройство ВЭУ состоит из: ветротурбины, установленной на мачте с растяжками и раскручиваемой ротором либо лопастями; электрогенератора; полученная электроэнергия поступает в: контроллер заряда аккумуляторов, подключенный к аккумуляторам (обычно необслуживаемые на 24 В)

Инвертор (= 24 В -> ~ 220 В 50Гц), подключенный к электросети

Промышленная ветровая установка

Wind turbine

Состоит из:

- Фундамент
- Силовой шкаф, включающий силовые контакторы и цепи управления
- Башня
- Лестница
- Поворотный механизм
- Гондола
- Электрический генератор
- Система слежения за направлением и скоростью ветра (анемометр)
- Тормозная система
- Трансмиссия
- Лопасти
- Система изменения угла атаки лопасти
- Обтекатель
- Система пожаротушения
- Телекоммуникационная система для передачи данных о работе ветрогенератора
- Система молниезащиты
- Привод питча

Маломощная модель ветряного генератора состоит из:

Небольшой электродвигатель постоянного тока (3-12 В) (используемый как генератор)
Кремниевый выпрямительный диод
Электролитический конденсатор (1000 мкФ 6 В)


Проблемы эксплуатации промышленных ветрогенераторов

Промышленный ветрогенератор строится на подготовленной площадке за 7-10 дней. Получение разрешений регулирующих органов на строительство ветровой фермы может занимать год и более.[где?] Кроме того, для обоснования строительства ветроустановки или ветропарка необходимо проведение длительных (не менее года) исследований ветра в районе строительства. Эти мероприятия значительно увеличивают срок реализации ветроэнергетических проектов.

Для строительства необходимы дорога до строительной площадки, место для размещения узлов при монтаже, тяжёлая подъёмная техника с выносом стрелы более 50 метров, так как гондолы устанавливаются на высоте около 50 метров.

В ходе эксплуатации промышленных ветрогенераторов возникают различные проблемы:

Неправильное устройство фундамента. Если фундамент башни неправильно рассчитан, или неправильно устроен дренаж фундамента, башня от сильного порыва ветра может упасть.

Обледенение лопастей и других частей генератора. Обледенение способно увеличить массу лопастей и снизить эффективность работы ветрогенератора. Для эксплуатации в арктических областях части ветрогенератора должны быть изготовлены из специальных морозостойких материалов. Жидкости, используемые в генераторе, не должны замерзать. Может замёрзнуть оборудование, замеряющее скорость ветра. В этом случае эффективность ветрогенератора может серьёзно снизиться. Из-за обледенения приборы могут показывать низкую скорость ветра, и ротор останется неподвижным.

Отключение/поломка тормозной системы. При этом лопасть набирает слишком большую скорость и, как следствие, ломается.

Отключение. При резких колебаниях скорости ветра срабатывает электрическая защита аппаратов, входящих в состав системы, что снижает эффективность системы в целом. Так же для больших ветростанций большая вероятность срабатывания защиты на отходящих ЛЭП.

Нестабильность работы генератора. Из-за того, что в большинстве промышленных ветрогенерирующих установках стоят асинхронные генераторы, стабильная работа их зависит от постоянства напряжения в ЛЭП.

Пожары. Пожар может возникнуть из-за трения вращающихся частей внутри гондолы, утечки масла из гидравлических систем, обрыва кабелей и т. д. Пожары ветрогенераторов редки, но их трудно тушить из-за отдалённости ветровых электростанций и большой высоты, на которой происходит пожар. На современных ветрогенераторах устанавливаются системы пожаротушения.

Удары молний. Удары молний могут привести к пожару. На современных ветрогенераторах устанавливаются молниеотводящие системы.

Шум и вибрация.

Перспективные разработки

Норвежская компания StatoilHydro и немецкий концерн Siemens AG разработали плавающие ветрогенераторы для морских станций большой глубины. StatoilHydro построила демонстрационную версию мощностью 2,3 МВт в июне 2009 года. Турбина под названием Hywind, разработанная Siemens Renewable Energy, весит 5 300 тонн при высоте 65 метров. Располагается она в 10 километрах от острова Кармой, неподалеку от юго-западного берега Норвегии. Компания планирует в будущем довести мощность турбины до 5 МВт, а диаметр ротора - до 120 метров. Аналогичные разработки ведутся в США.

Компания Magenn разработала специальный аппарат с установленным на нём ветрогенератором, который сам поднимается на высоту 120-300 метров. Нет необходимости строить башню и занимать землю. Аппарат работает в диапазоне скоростей ветра от 1 м/с до 28 м/с. Аппарат может перемещаться в ветряные регионы или быстро устанавливаться в местах катастроф.

Компания Windrotor предлагает конструкцию ротора мощной турбины, позволяющую значительно увеличить его размеры и коэффициент использования энергии ветра. Предполагается, что эта конструкция станет новым поколением роторов ветровых турбин.[источник не указан 2243 дня]

В мае 2009 года в Германии компанией Advanced Tower Systems (ATS) был запущен в эксплуатацию первый ветрогенератор, установленный на гибридной башне. Нижняя часть башни высотой 76,5 метров построена из железобетона. Верхняя часть высотой 55 метров построена из стали. Общая высота ветрогенератора (вместе с лопастями) составляет 180 метров. Увеличение высоты башни позволит увеличить выработку электроэнерии до 20 %.

В конце 2010 года испанские компании Gamesa, Iberdrola, Acciona Alstom Wind, Técnicas Reunidas, Ingeteam, Ingeciber, Imatia, Tecnitest Ingenieros и DIgSILENT Ibérica создали группу для совместной разработки ветрогенератора мощностью 15,0 МВт.

Евросоюз создал исследовательский проект UpWind для разработки офшорного ветрогенератора мощностью 20 МВт.

В 2013 году японская компания Mitsui Ocean Development & Engineering Company разработала гибридную установку: на единой плавающей в воде оси установлена ветровая турбина и турбина, работающая от приливной энергии.

Крупнейшие производители

Таблица 10 крупнейших производителей промышленных ветрогенераторов в 2010 году, МВт:

НазваниеСтранаОбъём производства, МВт.
1 Vestas  Дания 5 842
2 Sinovel  Китай 4 386
3 GE Energy  США 3 796
4 Goldwind  Китай 3 740
5 Enercon  Германия 2 846
6 Suzlon Energy  Индия 2 736
7 Dongfang Electric  Китай 2 624
8 Gamesa  Испания 2 587
9 Siemens Wind  Германия 2 325
10 United Power  Китай

1 600

В 2014 году суммарные мощности производителей турбин достигли 71 ГВт.

Цены

Компания Bloomberg New Energy Finance производит расчёт ценового индекса ветрогенераторов (Wind Turbine Price Index). С 2008 года до 2010 года средние цены на ветрогенераторы снизились на 15 %. В 2008 году средняя цена ветрогенератора составляла 1,22 млн евро за 1 МВт мощности.

В августе 2010 года средняя цена одного МВт ветрогенератора составляла 1,04 млн евро.

Малые ветрогенераторы

К малой ветроэнергетике относятся установки мощностью менее 100 кВт. Установки мощностью менее 1 кВт относятся к микро-ветровой энергетике. Они применяются на яхтах, сельскохозяйственных фермах для водоснабжения и т. д.

HAWT and VAWTs in operation medium

Строение малой ветровой установки

Ротор; лопасти; ветротурбина; хвост, ориентирующий ротор против ветра
Генератор
Мачта с растяжками
Контроллер заряда аккумуляторов
Аккумуляторы (обычно необслуживаемые на 24 В)
Инвертор (= 24 В -> ~ 220 В 50Гц), подключенный к электросети
Малые ветрогенераторы могут работать автономно, то есть без подключения к общей электрической сети.

Некоторые современные бытовые ИБП имеют модуль подключения источника постоянного тока специально для работы с солнечными батареями или ветрогенераторами. Таким образом, ветрогенератор может быть частью домашней системы электропитания, снижая потребление энергии от электросети.

Плюсы и минусы эксплуатации

В настоящее время, несмотря на рост цен на энергоносители, себестоимость электроэнергии не составляет сколько-нибудь значительную величину у основной массы производств на фоне других затрат[источник не указан 2776 дней]. Ключевым для потребителя остаётся надёжность и стабильность электроснабжения.

Основными факторами, приводящими к удорожанию энергии для использования в промышленности, получаемой от ветрогенераторов, являются:

необходимость получения электроэнергии промышленного качества ~ 220 В 50 Гц (применяется инвертор, ранее для этой цели применялся умформер)

необходимость автономной работы в течение некоторого времени (применяются аккумуляторы);

необходимость длительной бесперебойной работы потребителей (применяется дизель-генератор);

Считается, что применение малых автономных ветрогенераторов в быту малоцелесообразно из-за:

высокой стоимости аккумуляторных батарей: ~ 25 % стоимости установки (используется в качестве источника бесперебойного питания при отсутствии или пропадании внешней сети);

достаточно высокой стоимости инвертора (применяется для преобразования переменного или постоянного тока получаемого от ветрогенератора в переменное напряжение стандарта бытовой электросети (220 В, 50 Гц).

нередкой необходимости добавлять к нему дизель-генератор, сравнимый по стоимости со всей установкой.

Однако, при наличии общей электросети и современного ИБП с двойным преобразованием эти факторы становятся неактуальными, также часто такие ИБП предусматривают возможность дополнения различными нестабильными источниками постоянного тока, такими как ветрогенератор или солнечная батарея.

Наиболее экономически целесообразным в настоящее время является получение с помощью ветрогенераторов не электрической энергии промышленного качества, а постоянного или переменного тока (переменной частоты) с последующим преобразованием его с помощью ТЭНов в тепло для обогрева жилья и получения горячей воды. Эта схема имеет несколько преимуществ:

Отопление является основным энергопотребителем любого дома.

Схема ветрогенератора и управляющей автоматики кардинально упрощается.

Схема автоматики может быть в самом простом случае построена на нескольких тепловых реле.

В качестве аккумулятора энергии можно использовать обычный бойлер с водой для отопления и горячего водоснабжения.

Потребление тепла не так требовательно к качеству и бесперебойности, температуру воздуха в помещении можно поддерживать в широком диапазоне: 19-25 °С; в бойлерах горячего водоснабжения: 40-97 °С, без ущерба для потребителей.

Развитие

Индустрия домашних ветрогенераторов активно развивается, и за вполне умеренные деньги уже сейчас можно приобрести ветровую установку и на долгие годы обеспечить энергонезависимость своему загородному дому. Обычно для обеспечения электроэнергией небольшого дома вполне достаточно установки номинальной мощностью 1 кВт при скорости ветра 8 м/с. Если местность не ветреная, ветрогенератор можно дополнить фотоэлектрическими элементами или дизель-генератором, а ветрогенераторы с вертикальными осями могут быть дополнены меньшими ветрогенераторами (например, турбина Дарье может быть дополнена ротором Савониуса. При этом одно другому не мешает - источники будут дополнять друг друга).

Наиболее перспективными регионами для развития малой ветроэнергетики считаются регионы со стоимостью электроэнергии более $0,1 за кВт·ч. Себестоимость электроэнергии, производимой малыми ветрогенераторами в 2006 г. в США составляла $0,10-$0,11 за кВт·ч.

Американская ассоциация ветровой энергетики (AWEA) ожидает, что в ближайшие 5 лет себестоимость снизится до $0,07 за кВт·ч. По данным AWEA, в США в 2006 г. было продано 6807 малых ветровых турбин. Их суммарная мощность 17 543 кВт. Их суммарная стоимость $56 082 850 (примерно $3200 за кВт мощности). В остальном мире в 2006 г. были проданы 9502 малых турбины (без учёта США), их суммарная мощность 19 483 кВт.

Департамент Энергетики США (DoE) в конце 2007 года объявил о готовности финансирования особо малых (до 5 кВт) ветрогенераторов персонального использования.

AWEA прогнозирует, что к 2020 году суммарная мощность малой ветровой энергетики США вырастет до 50 тыс. МВт, что составит около 3 % от суммарных мощностей страны. Ветровые турбины будут установлены в 15 млн домах и на 1 млн малых предприятий. В отрасли малой ветроэнергетики будут заняты 10 тыс. человек. Они ежегодно будут производить продукции и услуг на сумму более чем $1 млрд.

В России тенденция установки ветрогенераторов для оснащения домов электричеством только зарождается. На рынке присутствуют буквально несколько производителей маломощных бытовых ветрогенераторов именно для домашнего использования. Цены на ветрогенераторы мощностью 1 кВт с полной комплектацией начинаются от 35-40 тыс. рублей (на 2012 год). Сертификация на установку данного оборудования не требуется.

Мы будем рады, если Вы сообщите о не соответствии информации или за предоставление дополнительной информации по теме материала.
Если Вы не нашли ответ на интерисующу Вас вопрос в материалах - Вы можете посмотреть среди ответов на вопросы, которые задавали другие пользователи до Вас или задать свой.